

1 Oral Submucous Fibrosis-God's Furry or Age Old Habits?

2 Dr. Rashmi Metgud

3 *Received: 9 December 2019 Accepted: 4 January 2020 Published: 15 January 2020*

4

5 **Abstract**

6 Introduction: OSMF is a potentially malignant disorder predominant in people of Asian
7 descent. Copper plays important role in pathogenesis of OSMF. Lysyl oxidase is a copper
8 activated enzyme critical for collagen cross linking. The uptake of copper into the epithelial
9 cells occurs probably by a non-energy dependent diffusion. In Indians, the practice of drinking
10 water stored in copper vessels for health benefits is being followed since ages. Aims and
11 Objective: The present study was conducted to study the effect of consuming water stored in
12 copper vessels in predisposing an individual to OSMF by evaluating cytological smears.
13 Materials and Methods: Cytological smears were prepared, stained with Rhodanine stain and
14 evaluated for the following groups. Aims and Objective: The present study was conducted to
15 study the effect of consuming water stored in copper vessels in predisposing an individual to
16 OSMF by evaluating cytological smears.

17

18 **Index terms**— copper vessel, water, OS MF, rhodanine.

19 **1 Introduction**

20 The exact etiology of OSMF is not well understood. Multiple factors such as genetic, autoimmune, nutritional and
21 environmental are being studied. Among the environmental agents different oral habits like intake of spicy food,
22 chewing of betel nut, betel quid and other preparations are included. Amongst these arecanut is confirmed as the
23 main etiological factor. [1] These factors are known to have either a direct effect or indirect effect by mediating
24 the immune system which is compromised in OSMF. [1] Pathogenesis is believed to involve juxtaepithelial
25 inflammatory reaction and fibrosis in the oral mucosa, probably due to an increased cross linking of collagen
26 through an increase in lysyl oxidase activity. Fibrosis, or the building up of collagen, results from the effects of
27 areca nut, which increases collagen production (e.g., stimulated by arecoline, an alkaloid) and decreases collagen
28 degradation. [2], [3] Copper, present in arecanut plays an important role in pathogenesis of OSMF. The enzyme
29 lysyl oxidase is a copper activated enzyme critical for collagen cross linking. Copper is absorbed into the epithelial
30 cells occurs probably by a non-energy dependent diffusion. Numerous factors influence the bioavailability and
31 subsequent absorption of copper by the oral mucosa. In Indians, the practice of drinking water stored in copper
32 vessels for health benefits is being followed since ages. The present study was being conducted to study the effect
33 of this age old habit as a cause for predisposing Indian population to OSMF.

34 **2 II.**

35 **3 Materials and Methods**

36 Exfoliative cytology was performed using cytobrush from buccal mucosal site. The participants were asked to
37 rinse their mouth before smears were prepared. The prepared smears were transferred on the glass slides and
38 were fixed using alcohol based fixative. The slide was stained for light microscopy with Rhodanine (Lindquist
39 method 1969) [4].

40 Additional smears were prepared from control group. The smears were kept overnight in supersaturated copper
41 sulphate solution and were used as positive controls. The following groups were taken: Group 1: Control group
42 (n=10) i.e. individuals with no chewing habit and normal oral mucosa.

7 DISCUSSION

43 Group 2: Study group (n=10) consisting of individuals consuming water stored in copper vessel without any
44 history of areca nut consumption. It was further divided into two sub groups depending on the duration of
45 consuming water stored in copper vessel a) n=5, Individuals consuming vessel stored water throughout the day
46 b) n=5, Individuals consuming water stored in vessel for overnight Group 3: Subjects clinically diagnosed as Oral
47 Submucous Fibrosis (n=10)

48 The whole smear was evaluated in a zig zag manner under 400x and 1000 cells per slide were evaluated for
49 the presence of staining. For interobserver variability 3 persons randomly observed the slides and divided them
50 into three groups depending on staining intensity as no stain, intermediate staining and intense staining.

51 4 III.

52 5 Statistical Analysis

53 Z test was performed to compare the staining intensity amongst OSMF patients and copper vessel water
54 consuming subjects. Also a comparison between the staining intensity of subjects consuming water stored in
55 copper vessel throughout the day and subjects consuming water stored overnight (once a day) was done.

56 IV.

57 6 Results

58 People consuming copper vessel stored water revealed staining comparable to that of OSMF patients. The
59 majority of squames in both the groups revealed presence of copper granules. The results obtained were found
60 to be statistically significant with a p value of 0.02. (Table 1) z test was performed and p < 0.05 was considered
61 to be significant People consuming copper vessel stored water throughout the day revealed dark red staining in
62 majority of squames than the ones consuming water once a day.

63 The results obtained were statistically highly significant with a p value < 0.0006 (Table 2). z test was performed
64 and the results were found to be highly significant V.

65 7 Discussion

66 An epidemiological survey done have shown an increase in number in India from 250000 cases reported in 1980
67 to 2 million cases in 1993. [5] The epidemiological assessment of the prevalence of OSF among Indian villagers,
68 based on baseline data, recorded a prevalence of 0.2% (n 10,071) in Gujarat, 0.4% (n 10,287) in Kerala, 0.04% (n
69 10,169) in Andhra Pradesh, and 0.07% (n 20,388) in Bihar. The prevalence among 101,761 villagers in the state
70 of Maharashtra (central India) was 0.03%. [2] A study of Moradabad district (Nigam et al, 2014) [6] showed
71 a prevalence rate of 6.3% while in a study of rural Jaipur population (Rohit Sharma et al, 2012) [7] showed
72 prevalence rate of 3.39%. The variation can be due to difference in the availability of different products.

73 Hypersensitivity to chili or betel quid is explained as a common factor in OSMF development. However, its
74 development is very rare in people of Mexico and South America even though their intake of chilies is equal to or
75 even exceeds from people of India or south East Asia. Thus a genetic perspective is considered vital to explain
76 this condition. Almost all carcinogenic agents, whether physical (radiation), chemical, or infectious (viruses), act
77 as mutagens. They change the structure of the genetic material, producing point mutations, deletions, insertions,
78 or rearrangement. Copper increases absorption of lysyl oxidase in oral submucous fibrosis patients that causes
79 cross linking of collagen and makes it resistant to digestion by collagenase enzyme. Thus it could be stated that
80 an increase in lysyl oxidase activity leads to accumulation of collagen [8] .

81 According to Rajendran et al 2001 [9] OSMF is believed to be a localized lesion of fibrosis in that part of
82 the oral mucosa that had localized contact of copper, however visceral organ fibrosis was not evident. The
83 bioavailability of copper and its absorption in the oral mucosa is influenced by numerous factors. Some of these
84 include presence of amino acids, dietary fats, carbohydrates, mineral elements, pH of oral environment.

85 However the exact mechanism through which copper is absorbed by the cells of the oral mucosa is not properly
86 known. In some literature role of membrane bound copper transporting adenosine triphosphates is evident and
87 mentioned at cellular level. [10] It is evident that copper binding sites form an extended polypeptide chain at
88 the amino terminus of the transmembrane domain that regulates its absorption. The reason for accumulation of
89 copper by cells are explained by the extracellular presence of tripeptide glycyl-L-histidyl-L-lysine (GHL), where
90 the first two residues of the GHL molecule are involved in the binding of copper, whereas the side chain of lysine
91 may be involved in the recognition of receptors that function in the uptake of copper into cells. This tripeptide
92 may be liberated within the lamina propria of areca chewers during the initial inflammatory phase of OSMF. [11]
93 Interleukin -1 beta which has been shown to potentiate collagen synthesis in vitro is another important regulator
94 of fibrosis that participates in the mediation of OSMF. Any interaction of copper with other agents in the nut,
95 such as arecoline, and mediators of inflammation, such as cytokines, need further study.

96 Since ancient times Ayurveda has advocated the benefits of drinking water from a copper vessel. Ayurveda
97 states that when you store water in a copper vessel it has the ability to balance all the three doshas in our
98 body. Scientifically speaking, when water is stored in a copper vessel for over eight hours, very small quantities
99 of copper get dissolved in this water. This process is called "oligodynamic effect" and has the ability to destroy
100 a wide range of harmful microbes, molds, fungi etc. due to the toxic effect it has on living cells.

101 Modified Rhodamine stain is a copper specific stain and histologically demonstrates copper in the tissues. [12]
102 Comparision of different histochemical staining methods has shown modified Rhodamine technique to be the
103 method of choice for the detection of copper. [13] Copper appears red to orange-red stain and the nucleus was
104 stained blue. [4] Irons RD et al have concluded that the Rhodamine method was found to produce the most
105 reproducible results and a linear relationship between microscopical evaluation of the stain and actual tissue
106 copper levels was observed. They considered that the Rhodamine method is applicable for the semiquantitative
107 evaluation of tissue copper and provides a satisfactory screening method for the identification of abnormal
108 tissue copper levels. They observed that a minimum of 60 g of copper per gram of tissue has to be present
109 for cytochemical identification of copper using Rhodamine staining technique. [14] Copper is widely used in
110 household plumbing materials. It is also enters the water ("leaches") through contact with the plumbing. Copper
111 leaches into water through corrosion. Copper can leach into water primarily from pipes, but fixtures and faucets
112 (brass), and fittings can also be a source. The amount of copper in water also depends on the types and amounts
113 of minerals in the water, how long the water stays in the pipes, the amount of wear in the pipes, the water's
114 acidity and its temperature. Safety of leached copper does not appear to be an issue since studies have shown
115 that the current WHO guideline of 2 mg Cu/L is safe. [15,16] Arakeri G et al (2014) [17] conducted a study
116 to evaluate that OSMF was significantly associated with a raised concentration of copper in drinking water.
117 The study was carried out in a heterogeneous population in Hyderabad-Karnataka, India, a region with a high
118 incidence of the condition. They evaluated 3 groups, each of 100 patients: those with OSMF who chewed gutkha,
119 those who chewed gutkha but did not have OSMF, and healthy controls who did not chew gutkha. The difference
120 between the groups in the mean concentration of copper in water measured by atomic absorption spectrometry
121 was significant ($p<0.001$). There were also significant differences between the groups in mean concentrations of
122 serum copper, salivary copper, and ceruloplasmin ($p<0.001$). The results confirm that copper in drinking water
123 contributes to the pathogenesis of OSMF, but ingestion of copper is unlikely to be the sole cause.

124 In the present study a comparison between normal subjects, copper vessel stored water consuming and OSMF
125 subjects showed difference in the no of squames showing positive staining. The normal subjects showed no
126 staining (Fig1). Subjects consuming copper vessel stored water throughout the day and those consuming water
127 stored overnight showed difference in the staining intensity (Fig 2, 3). People consuming copper vessel stored
128 water throughout the day showed majority of squames showing dark red staining than the ones consuming water
129 once a day(Fig4). The OSMF patients also showed positive staining but the staining was comparable with that
130 of copper vessel subjects (In mammals, copper can be absorbed from the stomach to the distal small intestine.
131 A critical component of copper gastrointestinal balance involves enterohepatic circulation. At least one-half of
132 the amount of copper reaching the small intestine reappears in the bile as strongly bound compounds, and is lost
133 in the stool. The distribution of copper throughout the body is mediated by ceruloplasmin, albumin, and other
134 quantitatively less important copper binders. [18] Copper added to cooked foods with high protein contents,
135 such as chicken liver or chick peas, was more poorly absorbed by rats than copper supplied from other vegetable
136 and animal sources. [19] A study was conducted by Janet R Hunt(2001) [20] that showed that although copper
137 was less efficiently absorbed from a vegetarian diet than from a nonvegetarian diet, the total apparent copper
138 absorption was greater from the vegetarian diet because of its greater copper content.

139 Storing water in copper and silver pots finds mention in ancient texts of Ayurveda for purification of water.
140 [21] A study conducted by Sudha et al (2009) ??22] provided laboratory evidence of the antibacterial activity of
141 copper pot in distilled water.

142 In India, copper is used as a cost effective and traditional method of disinfecting water. It is also used Fig.
143 ?? because of its health benefits mentioned in the Vedas. This age old habit of consuming copper vessel stored
144 water is still being practiced. The present study findings suggest that the inadvertent use of this age old habit
145 has led to the predisposition of Indians to OSMF. Moreover majority of the Indian population is vegetarian in
146 diet that makes higher copper bioavailability as compared to those having a non-vegetarian diet.

147 All these factors may be helpful to some extent in providing an explanation to the fact that why OSMF is
148 more prevalent in Indian population. Although further research with a large sample size is needed to prove this
149 hypothesis.

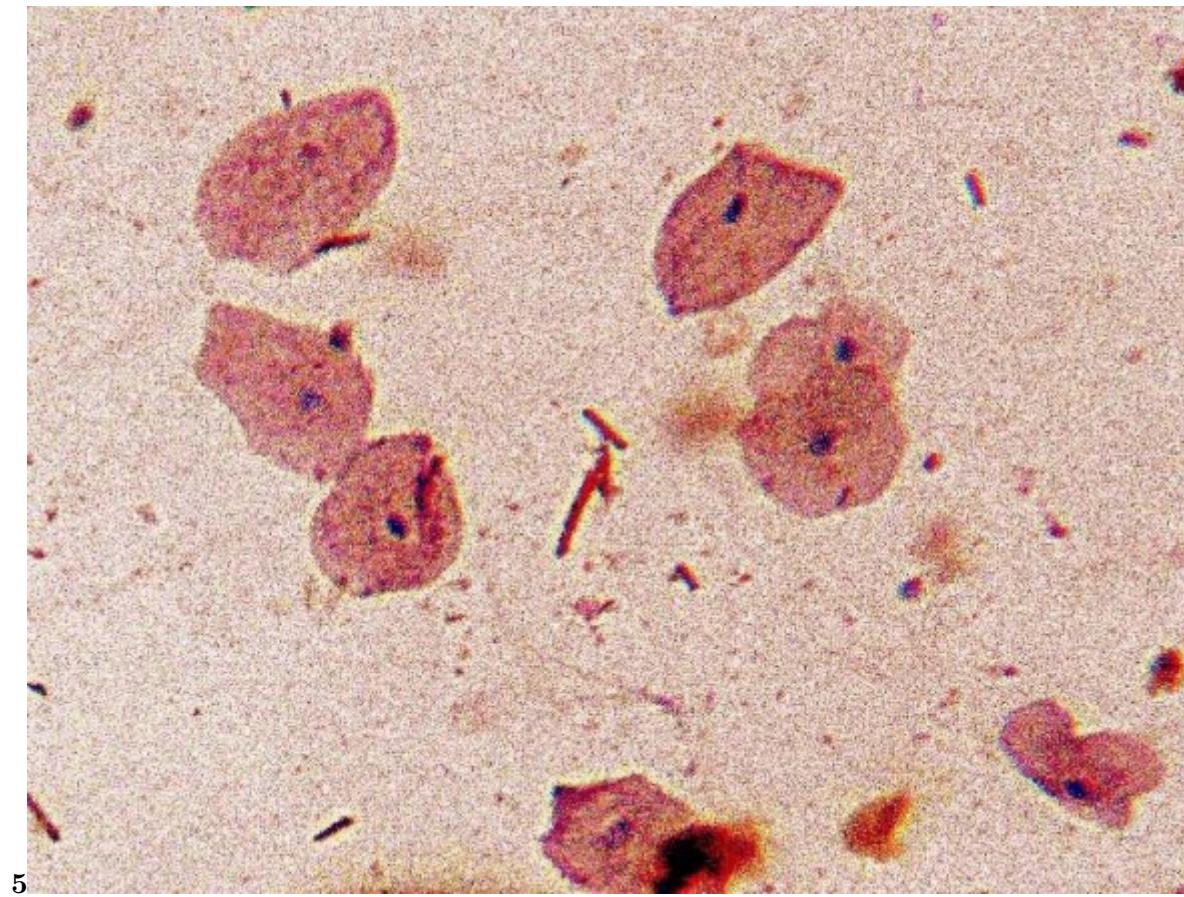


Figure 1: Fig 5)

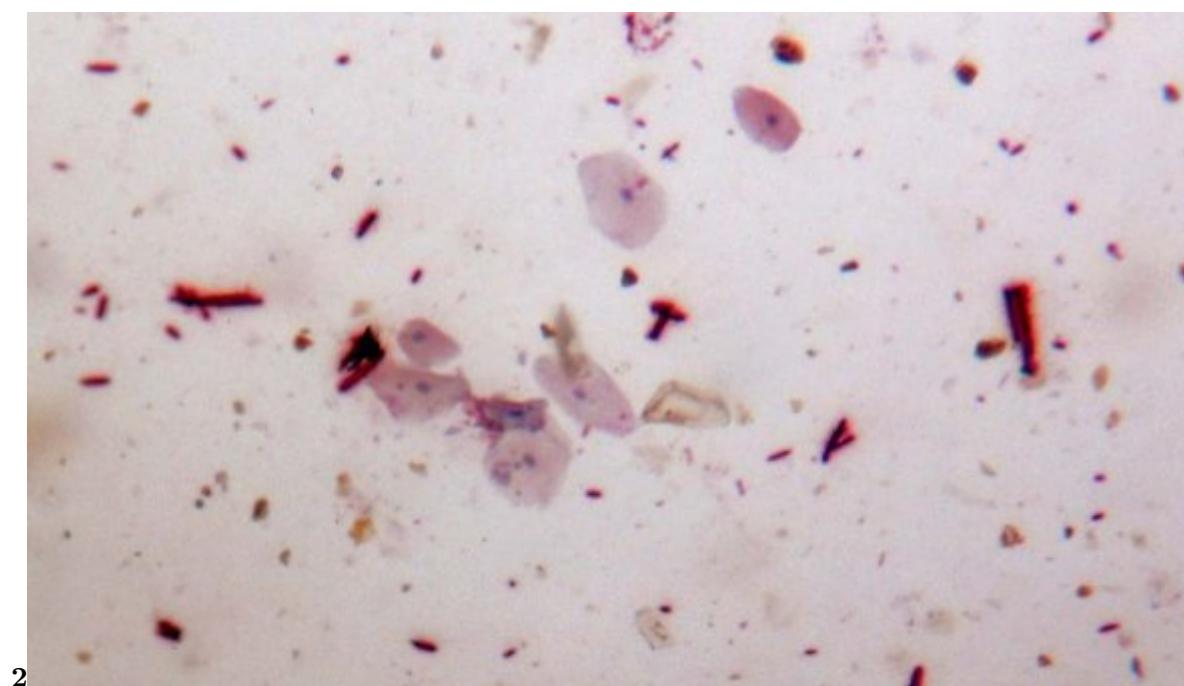
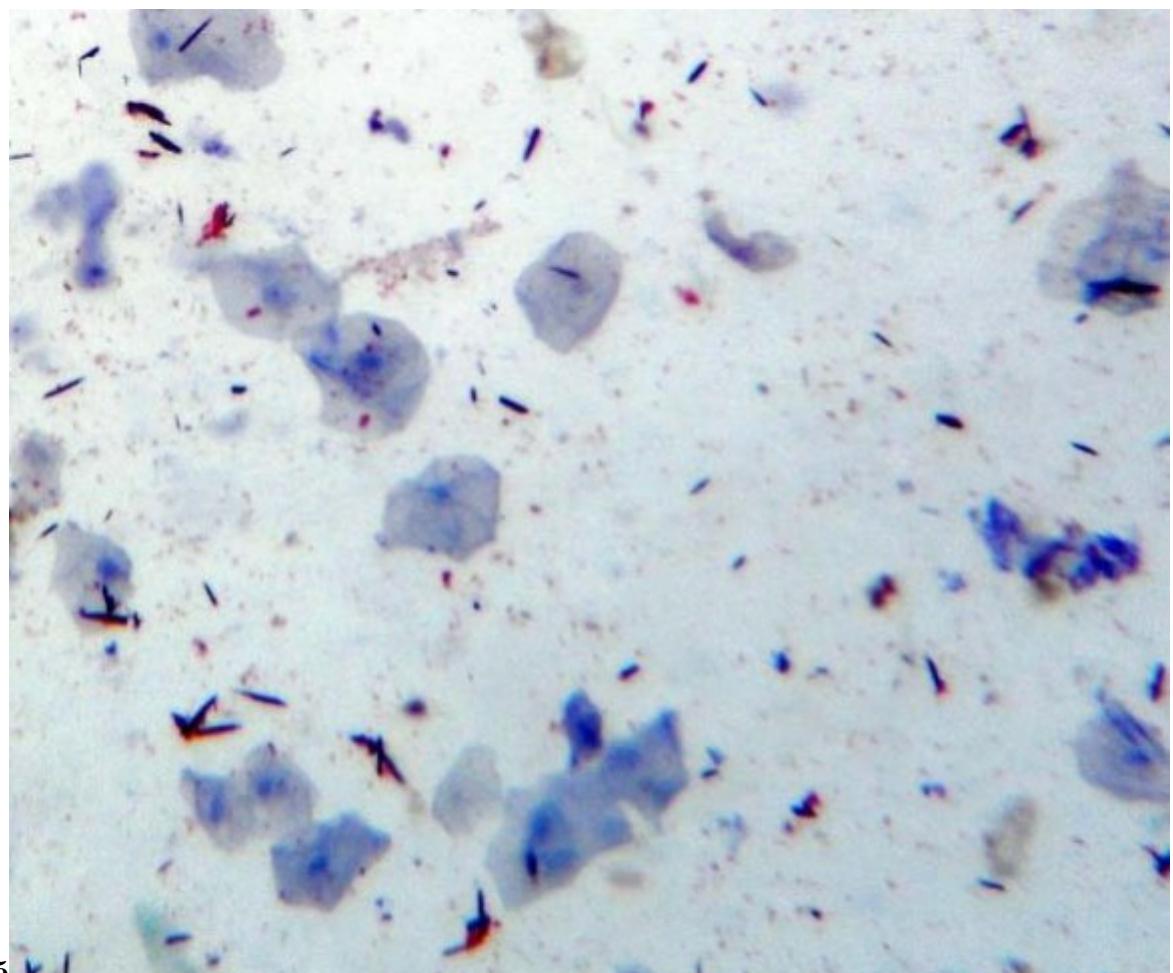



Figure 2: Fig. 2 :

315

Figure 3: Fig. 3 :JFig. 1 :Fig. 5 :

7 DISCUSSION

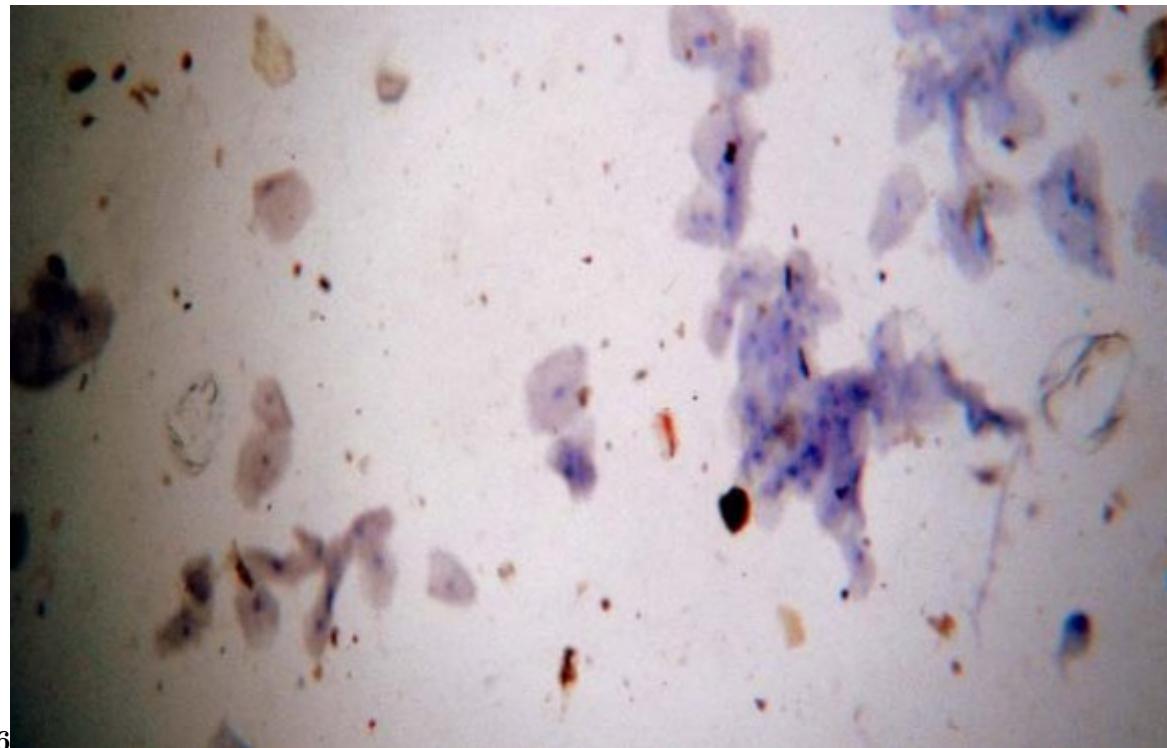


Figure 4: Fig. 6 :

1

Groups	Mean	sd	p value
Copper vessel	677.1	283.92	0.02(S)
OSMF	628	226.9	

Figure 5: Table 1 :

2

Groups	Mean	sd	p value
A (consumed throughout the day)	848.2	506	0.0006
B (once a day)	138.236	298.46	

Figure 6: Table 2 :

150 [Hunt and Vanderpool ()] *Apparent copper absorption from a vegetarian diet. The American journal of clinical*
151 *nutrition*, J R Hunt , R A Vanderpool . 2001. 74 p. .

152 [Araya et al. ()] 'Community-based randomized doubleblind study of gastrointestinal effects and copper exposure
153 in drinking water'. M Araya , M Olivares , F Pizarro , A Llanos , G Figueroa , R Uauy . *Environmental health*
154 *perspectives* 2004. 112 (10) p. 1068.

155 [Te B] 'Comparison of three histochemical staining methods for the detection of copper in white perch (Morone
156 americana) with abnormal hepatic copper storage'. Te B . *J Comp Pathol*

157 [Wapnir ()] *Copper absorption and bioavailability. The American journal of clinical nutrition*, R A Wapnir .
158 1998. 67 p. .

159 [Johnson and Lee ()] 'Copper absorption and excretion measured by two methods in rats fed varying concentra-
160 tions of dietary copper'. P E Johnson , D-Y Lee . *J Trace Elements Exp Med* 1988. 1 p. .

161 [Trivedy et al. ()] 'Copper content in Areca catechu (betel nut) products and oral submucous fibrosis'. C Trivedy
162 , D Baldwin , S Warnakulasuriya , N Johnson , T Peters . *Lancet* 1997. 349 (9063) p. 1447.

163 [Pettersson et al. ()] 'Copper in drinking water: not a strong risk factor for diarrhoea among young children. A
164 population-based study from Sweden'. R Pettersson , F Rasmussen , A Oskarsson . *Acta Paediatrica* 2003. 92
165 (4) p. .

166 [Trivedy et al. ()] 'Copper stimulates human oral fibroblasts in vitro: a role in the pathogenesis of oral submucous
167 fibrosis'. C Trivedy , S Meghji , K Warnakulasuriya , N W Johnson , M Harris . *Journal of oral pathology &*
168 *medicine* 2001. 30 (8) p. .

169 [Irons et al. ()] *Cytochemical methods for copper. Semiquantitative screening procedure for identification of*
170 *abnormal copper levels in liver. Archives of pathology & laboratory medicine*, R Irons , E Schenk , J Lee
171 . 1977. 101 p. .

172 [Mathew et al. ()] 'Estimation and Comparison of Copper Content in Raw Areca Nuts and Commercial Areca
173 Nut Products: Implications in Increasing Prevalence of Oral Submucous Fibrosis (OSMF)'. P Mathew , R D
174 Austin , Soma Susan Varghese , M . *Journal of clinical and diagnostic research: JCDR* 2014. 8 (1) p. 247.

175 [Jain et al.] 'Histological demonstration of copper and copper-associated protein in chronic liver disease'. S Jain
176 , P Scheirer , J Archer , B Newman , S , P , Sherlocks . *J Clin Pathol* (8) p. .

177 [Maquart et al. ()] 'In vivo stimulation of connective tissue accumulation by the tripeptide-copper complex
178 glycyl-L-histidyl-L-lysine-Cu2+ in rat experimental wounds'. F Maquart , G Bellon , B Chaqueur , J Wegrowski
179 , L Patt , R Trachy . *Journal of Clinical Investigation* 1993. 92 (5) p. 2368.

180 [Yang et al. ()] *Increased plasminogen activator inhibitor-1/tissue type plasminogen activator ratio in oral*
181 *submucous fibrosis. Oral diseases*, S F Yang , Y S Hsieh , C H Tsai , Y J Chen , Y C Chang . 2007. 13
182 p. .

183 [Rajendra et al. ()] *Indian journal of dental research: official publication of Indian Society for Dental Research*,
184 R Rajendra , B George , S Sivakaran , N Narendranathan . 2000. 12 p. . (Visceral organ involvement is
185 infrequent in oral submucous fibrosis (OSF))

186 [Guta and Mhaske ()] 'Oral submucous fibrosis: Current concepts in etiopathogenesis. People? s'. M Guta , S
187 Mhaske . *J Sci Res* 2008. 1 p. .

188 [Pillai et al. ()] 'Pathogenesis of oral submucous fibrosis. Relationship to risk factors associated with oral cancer'.
189 R Pillai , P Balaram , K S Reddiar . *Cancer* 1992. 69 (8) p. .

190 [Sharma et al. ()] 'Prevalence of oral Submucous fibrosis in patients visiting Dental college in Rural area of
191 Jaipur'. R Sharma , S S Raj , G Miahra , Y G Reddy , S Shenava , P Narang . *Rajasthan. J Indian Aca Oral*
192 *Med Radiol* 2012. 24 (1) p. .

193 [Shieh ()] *Proceedings of the National Science Council, Republic of China Part B, Life sciences*, T-Y Shieh ,
194 Yang J-F . 1992. 16 p. . (Collagenase activity in oral submucous fibrosis)

195 [Arakeri et al. ()] 'Role of drinking water copper in pathogenesis of oral submucous fibrosis: a prospective case
196 control study'. G Arakeri , S Hunasgi , S Colbert , M Merkx , P A Brennan . *British Journal of Oral and*
197 *Maxillofacial Surgery* 2014. 52 (6) p. .

198 [Bancroft and Gamble ()] *Theory and practice of histological techniques*, J D Bancroft , M Gamble . 2008. Elsevier
199 Health Sciences.

200 [Sharma et al. ()] 'Varanasi: Chaukamba Visva Bharati'. P Sharma , Susruta , Samhita . *Sutra Sthana* 2004. 1
201 p. 418.