

GLOBAL JOURNAL OF MEDICAL RESEARCH: K

INTERDISCIPLINARY

Volume 21 Issue 8 Version 1.0 Year 2021

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals

Online ISSN: 2249-4618 & Print ISSN: 0975-5888

Magnitude of a Metabolic Risk Profile in Sepsis Scales in Patients with Pneumonia

By Muñoz Pérez Marco Antonio, Lozada Pérez Carlos Alberto,
Alcántara Alonso Estefanía, López González Jesús Alberto,
González Hernández María Fernanda, Medina García Eduardo
& Flores Alcantar María Guadalupe

Abstract- Introduction: The mortality of community acquired pneumonia (CAP) ranges from 5% to 15%, depending logically on whether the study has been performed in the community or in a hospital setting, as well as varying also according to age. In Mexico as of June 26, 2021, there are 2,498,357 confirmed cases of COVID and 232,346 deaths. There are studies showing that cardiovascular disease is a risk factor for sepsis events. In the absence of a single prognostic marker, it is important to have clinical tools to estimate the probability of in-hospital death in septic patients and thus identify high-risk patients and improve the appropriate use of medical interventions to be performed.

Objective: To know the magnitude of a metabolic risk profile in sepsis scales in patients with pneumonia.

Keywords: pneumonia, COVID 19, sepsis, prognostic scales.

GJMR-K Classification: NLMC Code: WC 202

MAGNITUDE OF A METABOLIC RISK PROFILE IN SEPSIS SCALES IN PATIENTS WITH PNEUMONIA

Strictly as per the compliance and regulations of:

Magnitude of a Metabolic Risk Profile in Sepsis Scales in Patients with Pneumonia

Muñoz Pérez Marco Antonio ^a, Lozada Pérez Carlos Alberto ^a, Alcántara Alonso Estefanía ^b, López González Jesús Alberto ^c, González Hernández María Fernanda ^c, Medina García Eduardo ^d & Flores Alcantar María Guadalupe ^x

Abstract- Introduction: The mortality of community acquired pneumonia (CAP) ranges from 5% to 15%, depending logically on whether the study has been performed in the community or in a hospital setting, as well as varying also according to age. In Mexico as of June 26, 2021, there are 2,498,357 confirmed cases of COVID and 232,346 deaths. There are studies showing that cardiovascular disease is a risk factor for sepsis events. In the absence of a single prognostic marker, it is important to have clinical tools to estimate the probability of in-hospital death in septic patients and thus identify high-risk patients and improve the appropriate use of medical interventions to be performed.

Objective: To know the magnitude of a metabolic risk profile in sepsis scales in patients with pneumonia.

Material and methods: Observational, analytical cross-sectional study in 117 patients selected by non-probabilistic sampling from June 2019 to December 2020 in three hospitals of the health secretariat of Mexico City with diagnosis of community-acquired pneumonia and patients with SARS-CoV-2 infection. Non-parametric ROC curves were performed from those clinical and biochemical variables that showed an area under the curve > 50 % for the variables APACHE 25, SOFA 3 and PSI PORT 90. A cutoff point was established with those that presented better sensitivity and specificity with a subsequent multivariate analysis by binary logistic regression to calculate the odds ratios of each variable adjusted for age. The significance level was established with a $p < 0.05$, the data were analyzed with the Stata 14 program.

Results: The variables that improve sensitivity and specificity and impact prognostic scales using a logistic regression model were for "APACHE 25 arterial alveolar gradient Grad(A-a)O2 in both groups (OR=4.84 CI 6.88-95.3 p=0.0001). "SOFA 3" with C-reactive protein (OR= 2.40 CI 1.21-6.74 p= 0.016), GA-A (OR=2.87 CI1.54-9.99 p=0.004), Tg/HDL index (OR=2.81 CI1.01-1.06 p=0.005).

Atherogenic index only in "CAP" group (OR=2.33 CI1.17-6.58 p=0.020). "PSI 90" showed significance in Grad(A-a)O2 only in "COVID" group (OR= 2.12 CI1.10-13.88 p=0.034).

Conclusions: There are parameters not included in the severity scales for pneumonia that increase their sensitivity and specificity, parameters that are low cost and quickly obtained when a patient is admitted to hospital. Indices derived from lipid profile, blood biometry and respiratory profile such as

Author a p c Q y §: Hospital General de Ticomán, Mexico City, Mexico.

e-mail: marcopolosagatario@gmail.com

Author b: Luis Guillermo Ibarra Ibarra National Rehabilitation Institute, Mexico City, Mexico.

Author c: Hospital General Xoco, Mexico City, Mexico.

Tg/HDL, atherogenic, neutrophil/lymphocyte and alveolar arterial gradient have an indirect impact on the prognosis and severity of a patient with pneumonia, not only in community-acquired pneumonia but also in patients with COVID 19 pneumonia.

Keywords: pneumonia, COVID 19, sepsis, prognostic scales.

Resumen- Introducción: La mortalidad de la neumonía adquirida en la comunidad (NAC) oscila entre el 5% y el 15%, dependiendo lógicamente de si el estudio ha sido realizado en la comunidad o en ámbito hospitalario, así como variando también según la edad. En México al 26 de Junio 2021 existen 2,498,357 casos confirmados por COVID y 232,346 muertes. Existen estudios demostrando que la enfermedad cardiovascular es un factor de riesgo para eventos de sepsis. Al no disponer de un marcador pronóstico único, es importante disponer de herramientas clínicas para estimar la probabilidad de muerte intrahospitalaria en pacientes sépticos y así identificar los pacientes de alto riesgo y mejorar el uso apropiado de las intervenciones médicas a realizar.

Objetivo: Conocer la magnitud de un perfil metabólico de riesgo en las escalas de sepsis en pacientes con neumonía

Material y métodos: Estudio observacional, analítico de corte transversal en 117 pacientes por elegidos por muestreo no probabilístico de Junio 2019 a Diciembre 2020 en tres hospitales de la secretaría de salud de la ciudad de México con diagnóstico de neumonía adquirida en la comunidad y pacientes con infección por SARS-CoV-2. Se realizaron curvas ROC no paramétricas a partir de aquellas variables clínicas y bioquímicas que mostraron un área bajo la curva > 50 % para las variables APACHE 25, SOFA 3 y PSI PORT 90. Se estableció un punto de corte con aquellas que presentaban mejor sensibilidad y especificidad con un posterior análisis multivariado mediante regresión logística binaria para calcular las razones de momio de cada variable ajustadas por edad. Se estableció el nivel de significancia con una $p < 0.05$, los datos fueron analizados con el programa Stata 14.

Resultados: Las variables que mejoran la sensibilidad y especificidad e impactan a las escalas pronósticas utilizando un modelo de regresión logística fueron para "APACHE 25 gradiente alveolo arterial Grad(A-a)O2 en ambos grupos (OR=4.84 IC 6.88-95.3 p=0.0001). "SOFA 3" con proteína C reactiva (OR= 2.40 IC 1.21-6.74 p= 0.016), GA-A (OR=2.87 IC1.54-9.99 p=0.004), Índice Tg/HDL (OR=2.81 IC1.01-1.06 p=0.005). Índice aterogénico únicamente en grupo "NAC" (OR=2.33 IC1.17-6.58 p= 0.020). "PSI 90" mostro significancia en GA-A solo en grupo "COVID" (OR= 2.12 IC1.10-13.88 p=0.034).

Conclusiones: Existen parámetros no incluidos en las escalas de severidad en neumonía que aumentan la sensibilidad y especificidad de las mismas, parámetros que son de bajo costo y de rápida obtención al ingreso de un paciente a hospitalización. Índices derivados de perfil lipídico, de la biometría hemática y perfil respiratorio como Tg/HDL, aterogénico, neutrofílo/linfocito y gradiente alveolo arterial impactan de manera indirecta en el pronóstico y severidad de un paciente con neumonía no solo en neumonía adquirida en la comunidad si no en pacientes con neumonía por COVID 19.

Palabras clave: neumonía, COVID 19, sepsis, escalas pronósticas.

I. INTRODUCTION

The current virus named SARS-CoV-2, initially called 2019-nCov (2019 novel coronavirus), emerges in December 2019 in the Chinese city of Wuhan upon detection of numerous cases of a pneumonia of unknown origin to date. The disease caused by this pathogen is COVID-19 (Coronavirus Infection Disease 2019), and was declared by WHO on January 30 and March 11, 2020 as an International Public Health Emergency and Global Pandemic, respectively ⁽¹⁾. In Mexico, as of June 26, 2021, there are 2,498,357 confirmed cases of COVID and 232,346 deaths ⁽²⁾.

Excluding COVID-19 pneumonia, community-acquired pneumonia (CAP) is a disease with an incidence of approximately 10 cases per 1000 inhabitants/year. The mortality of CAP ranges from 5% to 15%, depending logically on whether the study was performed in the community or in a hospital setting, as well as varying according to age ⁽³⁾.

Clinical prediction rules (CPR) are tools designed for decision making, containing three or more simple variables obtained from the clinical history, physical examination and/or ancillary tests. These rules are usually created by multivariate analysis and can predict the mortality of a disease and suggest a diagnosis or therapeutic course of action ⁽⁴⁾. The majority of RPC correspond to scoring systems. In recent years, most sepsis research has focused on early detection and care of acute sepsis. But few efforts have conceptualized sepsis as a preventable condition; identifying risk factors and developing a strategy for sepsis prevention could be a valuable effort to reduce the societal burden of this life-threatening and costly disease. ⁽⁵⁾

A new generation of scores, developed specifically to predict ICU admission, focuses on the severity of pneumonia itself rather than age and comorbid conditions. Overall, the performance of these scores appears superior to that of PSI or CURB-65. The inclusion of several biomarkers such as procalcitonin, endothelin-1, co-peptin, pro-atrial natriuretic peptide, or adrenomedullin; however, these biomarkers are unlikely to predict clinical deterioration due to hospital-acquired complications or decompensated comorbidities; it is

even questionable whether they detect circulatory or respiratory failure in patients admitted very early in the course of their illness ⁽⁶⁾.

The Pneumonia Severity Index (PSI) was proposed by Fine et al. The PSI is the first model for assessing CAP. It includes three demographic variables, five comorbidities, five physical examination variables, and seven laboratory tests. ⁽⁷⁾

The Acute Physiology and Chronic Health Evaluation II (APACHE II) score is the most commonly used critical illness evaluation system in clinical ICUs. It consists of three sections, namely acute physiology, age, and chronic health assessment. The acute physiology score consists of 12 physiological variables. ^(8,9)

The Sequential Organ Failure Assessment (SOFA) score was proposed by the European Society of Intensive Care Medicine. The SOFA score is primarily used to describe the onset and development of multiorgan dysfunction syndrome. Six systems are included in the model, namely the respiratory system, nervous system, hepatic system, cardiovascular system, coagulation system and renal system ⁽¹⁰⁾.

There are studies demonstrating that cardiovascular disease is a risk factor for sepsis events. The association between baseline cholesterol and sepsis rates remains unknown. As with coronary heart disease, a relationship between cholesterol and sepsis could provide an opportunity to potentially reduce an individual's long-term risk for the development of sepsis ⁽¹¹⁾.

Metabolic syndrome (MetS) involves a group of metabolic abnormalities including centrally distributed obesity, decreased high-density lipoprotein cholesterol (HDL-C) concentration, elevated triglycerides (TG), high blood pressure, and hyperglycemia. MetS is also a risk factor for developing type 2 diabetes mellitus (DM2), heart disease, and stroke associated with arteriosclerosis which are causes of mortality. It is a risk factor for cardiovascular disease. Given the above, it is considered a public health problem, especially in westernized countries, with a prevalence of 39.7% in Mexico. ^(12,13)

Mexican adults have a 71.2% prevalence of overweight and obesity, 25.5% have hypertension and 13.7% have type 2 diabetes mellitus. In people aged 50 to 59 years, dyslipidemia has a prevalence of 36.8%. A common phenotype in this age group was high TG with low blood levels of HDLc ⁽¹⁴⁾.

In this context, a new index has been proposed to estimate cardiovascular risk, which considers the TG/HDL-C ratio. This index has been used in different types of populations, such as in subjects at high risk of coronary heart disease, in subjects with DM, and in patients with coronary heart disease; in all these studies, the TG/HDL-C ratio was an independent predictor of cardiovascular disease ⁽¹⁵⁾.

Low HDL cholesterol and high triglyceride concentrations measured before or during hospitalization are strong predictors of a severe disease course. Lipid profile should be considered as a sensitive marker of inflammation and should be measured in patients with COVID-19 ⁽¹⁶⁾.

Compared with patients with mild or asymptomatic COVID-19, individuals with severe complications have a higher prevalence of comorbidities such as hypertension, cardiovascular disease, and type 2 diabetes mellitus. These comorbidities share the common metabolic disturbances of insulin resistance and dyslipidemia; the latter has been associated with severe COVID-19 ⁽¹⁷⁾.

Most patients with COVID-19 in the ICU develop ventilator-associated bacterial pneumonia (VAP), suggesting that both COVID-19 and bacterial infection may influence the lipid profile. ⁽¹⁸⁾ The Tg / HDLc ratio can be used as an early biochemical marker of severe COVID-19 prognosis with need for invasive mechanical ventilation. ⁽¹⁹⁾

Although the SOFA score is a simple and effective method to describe organ dysfunction in critically ill patients and to evaluate their evolution during their stay in the ICU, it does not allow distinguishing between acute, chronic or exacerbated chronic organ dysfunction, nor does it allow determining whether the organ dysfunction is secondary to the occurrence of an infectious condition or another condition that leads to this organ failure. ⁽²⁰⁾

In the absence of a single prognostic marker, it is important to have clinical tools to estimate the probability of in-hospital death in septic patients in order to identify high-risk patients and improve the appropriate use of medical interventions.

II. MATERIAL AND METHODS

An observational, analytical, cross-sectional study was conducted in 117 patients selected by non-probabilistic sampling from June 2019 to December 2020 in three hospitals of the Secretary of Health of Mexico City who were admitted to the internal medicine service with a diagnosis of community-acquired pneumonia prior to the COVID 19 pandemic and patients with SARS-CoV-2 infection confirmed by a positive polymerase reaction test (PCR). They were grouped into two categories: the "CAP" group included 12 patients; the "COVID" group included 105 patients. Excluded were patients who refused to participate in the study; patients diagnosed with liver disease (hepatitis B, hepatitis C, autoimmune hepatitis, liver cirrhosis, hepatocellular carcinoma), dyslipidemia; patients on treatment with statins or other lipid-lowering drugs or using steroids 7 days prior to the study; patients with a clinical diagnosis of HIV, active pulmonary tuberculosis

and patients discharged from the hospital during the three weeks prior to the study.

All patients received clinical laboratory sampling at baseline. All laboratory tests had completed the standardization and certification program. The severity scales to be studied were SOFA, APACHE and PSI PORT for both groups; therefore, clinical and biochemical parameters included in these scales were included. Based on the literature, cut-off points were established for severity and mortality scales in pneumonia APACHE with a score greater than 25 points corresponding to a mortality greater than 50% PSI PORT greater than 90 points indicating hospitalization requirement. SOFA greater than 3 points, taking this cut-off point because the sample "n" for SOFA less than 2, which is necessary in the operational definition of sepsis, was limited to 3 patients. Other variables included in the analysis were weight, height, body mass index, blood count, renal function tests (urea, blood nitrogen, creatinine), lipid profile (total cholesterol, HDL cholesterol, LDL cholesterol), procalcitonin. In addition, the COVID included severity markers (D-dimer, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), ferritin. Indices derived from the biochemical parameters analyzed, which have been associated with inflammatory activity or severity, were evaluated: triglycerides / HDL cholesterol, total cholesterol / HDL cholesterol (atherogenic index), partial oxygen pressure / fraction of inspired oxygen (PaO₂ / FiO₂), oxygen saturation / fraction of inspired oxygen (SaO₂ / FiO₂) and absolute neutrophils / absolute lymphocytes.

Descriptive statistics were performed by analyzing the distribution of the different continuous variables using the Shapiro Wilk test in the "CAP" group and the Kolmogorov Smirnov test in the "COVID" group; variables with non-normal distribution were found, so median and interquartile range were used as summary measures for these variables. The odds ratio (OR) with 95% confidence intervals (CI) was used as a measure of association to establish the advantage of one group over another. To establish differences in the frequencies according to the distribution of the variables, the chi-square test, Student's t-test, Mann Whitney test and Kruskal Wallis test with a significance level of 0.05 were used.

Nonparametric ROC curves were made from those clinical and biochemical variables that showed an area under the curve > 50% for the variables APACHE 25, SOFA 3 and PSI PORT 90. A cutoff point was used to categorize these variables according to those with the best sensitivity and specificity; with these categorized variables, a binary logistic regression analysis was performed for the multivariate model to calculate the odds ratios of each variable adjusted for age. The significance level was established with a p < 0.05, the data were analyzed with the Stata 14.0 program.

The present study followed the ethical regulations in force at the hospital level. All the subjects surveyed, of legal age and capacity, signed the informed consent form; this study was classified as research without risk for the participants, collecting only pertinent data; the principle of confidentiality was maintained, taking into account personal identification by means of an alphanumeric code.

III. RESULTS

The contrast of the severity of pneumonia by hospital institution, according to the PSI/PORT, SOFA and APACHE scales, is shown in Table 1. No statistically significant differences were found in any of the scales evaluated (Kruskal Wallis 0.085, $p = 0.958$). 105 (89.7 %) participants who were diagnosed with COVID-19 represented 97.8 % of the patients at Hospital General Xoco, 90.6 % at Hospital General Tláhuac and 68.4 % at Hospital General de Ticomán. Overall, the highest percentage of patients were found in category 3 of the PSI PORT scale. The proportion of PSI class in both groups is shown in Figure 1.

The contrast of clinical and sociodemographic characteristics according to the diagnosis of CAP or COVID-19 is presented in Table 2. The proportion of patients with pleural effusion, liver disease, and the pO_2/FiO_2 and PSI/PORT indices, with their respective classes, were significantly higher in patients with CAP. In patients with a diagnosis of COVID-19, respiratory frequency, TG concentration, SOFA scale, and A-aO_2 were higher than in the latter. No significant differences were found in cardiovascular risk parameters (BMI, TG/C-HDL index, complete lipid profile, diabetes mellitus and systemic arterial hypertension; $p > 0.05$) (Table 2).

The concentrations of D-dimer, ferritin, CRP, fibrinogen and the sO_2/FiO_2 index were only established in patients with a diagnosis of COVID-19. In these, D-dimer concentration correlated directly and significantly with TG/C-HDL index (Spearman's $p = 0.205$, 95 % CI 0.018 - 0.378, $p = 0.0277$) and serum TG concentration (Spearman's $p = 0.184$, 95 % CI -0.001 - 0.358, $p = 0.0473$).

In the ROC curve analysis, we found for the variable "APACHE 25" an area under the curve greater than 50% with confidence intervals greater than unity for the level of neutrophils, glycosylated hemoglobin, arterial alveolar gradient and borderline value in CI for the neutrophil-lymphocyte index. The variable "SOFA 3" obtained a significant area with C-reactive protein, arterial alveolar gradient, Tg/HDL index and atherogenic index (total cholesterol/HDL). "PSI PORTH 90" showed a significant curve with D-dimer, arterial alveolar gradient and lymphocyte neutrophil index (Table 3).

The multivariate model with binary logistic regression included the cut-off points according to the

best sensitivity and specificity of the ROC curve, obtaining in the three scales an OR greater than unity with $p < 0.05$ only for Grad(A-aO_2 (arterial alveolar gradient). The "APACHE 25" scale showed a statistically significant OR for GA-A only. "SOFA 3" showed significant OR for C-reactive protein, arterial alveolar gradient, Tg/HDL index, however atherogenic index was only significant in the "CAP" group. "PSI 90" only showed a significant difference in the COVID group in arterial alveolar gradient (Table 4).

IV. DISCUSSION

The data obtained show that the scales analyzed in pneumonia increase their sensitivity and specificity by associating other biochemical variables not included in the scales, although they do so with different precision and with different cutoffs for each scale, despite being the same variable studied.

When correlating variables, we found a statistically significant association between HDL cholesterol and total triglycerides with markers of inflammation such as Dimero D and ferritin, results very similar to those found by Masana et al [16] even with a smaller population than their study, so we could infer that there is a proinflammatory state prior to and during hospitalization of patients with pneumonia that is aggravated by the addition of a septic process.

The calculation of Grad(A-aO_2 allows assessment of ventilation-perfusion inequality; it is conditioned by FiO_2 . In our multivariate study, Grad(A-aO_2 was an important parameter for establishing a risk profile with the highest statistical significance and OR for the three severity scales analyzed, but not for the parameters $\text{SaO}_2/\text{FiO}_2$ and $\text{PaO}_2/\text{FiO}_2$; However, Grad(A-aO_2 is only a reliable reflection of the alterations in the physiological shunt when there is cardiovascular stability, constant FiO_2 and elevated PaO_2 as mentioned in Sanchez Casado et al [22] in their work; however, with initial blood gases without other biochemical variables we can identify those patients with worse prognosis. This can be useful in an emergency department, especially in the context of the COVID 19 pandemic.

The neutrophil-lymphocyte index obtained statistical significance in the multivariate as a marker of severity for the APACHE scale; contradictorily to what was found by Che-Morales [23] the statistical significance was not in the community-acquired pneumonia group but in the group of COVID patients, a result that could be explained by the sample size of the CAP group. It should be noted that the cutoff point of the index > 7.2 for a PSI class III in the risk group of patients with pneumonia found by Che-Morales was similar to that reported in this work with a cutoff point > 7.79 .

SOFA was the scale that obtained the most statistically significant variables; sensitivity and specificity increase when lipid profile variables are included, especially the triglyceride level. As analyzed by Lee-Park et al [21] in their study, including the triglyceride level in the SOFA scale improves sensitivity and specificity in the ROC curve; however, in our study the greatest impact on this scale was the inclusion of the Tg/HDL index, as in the study by Alcántara Alonso et al [19] When the triglyceride/HDL index is associated, a greater OR is observed with very narrow confidence intervals in the multivariate analysis; in our study, the cut-off point was 5.41 as opposed to 7.45 according to that reported by Alcántara, however in our study the sample was not directed only to patients who developed mechanical ventilation or to a type of pneumonia, a situation that could explain this difference in value but which is one of the strengths of this study; despite this discordance the influence of this index is clear; this index has been related to insulin resistance and increased cardiovascular risk and little has been studied in processes of acute inflammation such as sepsis.

Regarding C-reactive protein, similarities were found to reports by Huang et al [24] in meta-analysis of Chinese studies with an n over 5000 patients where an elevated CRP >10 mg/L was associated with an unfavorable outcome (RR) 1.84 (1.45, 2.33), p<0.001. A sensitivity of 51%, a specificity of 88%, and an area under the curve (AUC) of 0.84. We found a cut-off point of >12.2mg/L (OR) 2.40 (1.21-6.74), p=0.016 sensitivity 66%, specificity 50%. (AUR) of 0.57 for a probability of obtaining a SOFA greater than 3 points in both pneumonia groups; a result that reinforces that it is an important variable to consider as a prognostic factor, not only in patients with COVID-19, but also in patients with community-acquired pneumonia. In contrast to the aforementioned study, Procalcitonin, D- dimer and ferritin did not obtain statistical significance in the multivariate, only D-dimer in the ROC curve for the PSI scale.

Among the limitations of this study, it is possible that the size of the sample n influenced the wide confidence intervals found in the significant variables when performing the logistic regression; however, some of the significant variables found in the linear correlations did not obtain the expected result, especially for the community-acquired pneumonia group when performing the multivariate analysis, which could lead to a type B error. The heterogeneity of the groups in each hospital site and treatment established could influence the result obtained in this study.

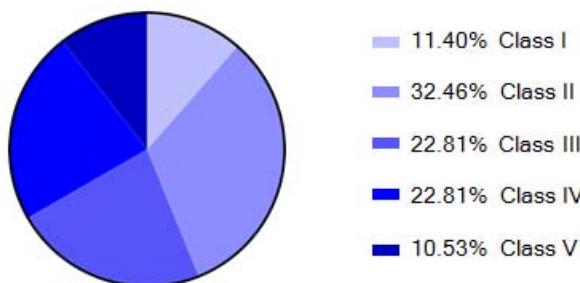
The lipid and respiratory profile could be extrapolated to other severity scales not analyzed in this study, such as Logistic Organ Dysfunction Score (LODS), Early Warning Score (NEWS), Graham COVID, Brescia COVID, MuLBSTA score, among others, adapting them by adding the variables proposed in this

study and obtaining a new scale applicable to the Mexican population.

V. CONCLUSIONS

There are parameters not included in the severity scales used in patients with pneumonia, which are accessible, inexpensive and quickly obtained when a patient is admitted to the hospital, increasing their sensitivity and specificity. New indexes derived from lipid profile such as Tg/HDL, atherogenic, blood biometry, neutrophil/lymphocyte index and respiratory profile such as alveolar arterial gradient have an indirect impact on the prognosis and severity of a patient with pneumonia, not only in community-acquired pneumonia but also in patients with COVID 19 pneumonia. The proposed variables improve the ability to identify patients at risk of poor short-term outcomes compared to the already known scales.

REFERENCES RÉFÉRENCES REFERENCIAS


1. Torre SM, Geisselmann IA, Molinero IG, Gómez RG, Girón RM. Diagnostic breadth of COVID-19 pneumonia in pandemic time from primary care. *FMC*. 2020; 27(10): 543-546. doi:10.1016/j.fmc.2020.07.003.
2. Mortality Analyses Coronavirus resource center. Johns Hopkins University and Medicine. 2021 <https://coronavirus.jhu.edu/data/mortality.d> (cited 26 Jun 2021).
3. Vila-Corcoles A., Ochoa-Gondar O., Rodriguez-Blanco T., Raga-Luria X., Gomez-Bertomeu F., EPIVAC Study Group Epidemiology of community-acquired pneumonia in older adults: a population-based study. *Respir Med*. 2009; 103: 309-316.
4. Laupacis A, Sekar N, Stiell IG. Clinical prediction rules. A review and suggested modifications of methodological standards. *JAMA*. 1997; 277(6): 488-94.
5. Marin-Marín Diego, Soto Alonso. Comparison of prognostic scoring systems in the prediction of mortality and complications in sepsis. *Rev. peru. med. exp. public health*. 2016; 33 (1): 51-57.
6. Martí C, Garin N, Prediction of severe community-acquired pneumonia: a systematic review and meta-analysis. *Crit Care*. 2012 Jul 27; 16(4): R141.
7. Chinese Thoracic Society. Clinical practice guidelines for diagnosis and management of adults with hospital-acquired and ventilator-associated pneumonia (2018 edition) (in Chinese). *Chin J Tuberc Respir Dis* 2018; 41: 255-280.
8. Lim WS, van der Eerden MM, Laing R, Boersma WG, Karalus N, Town GI, et al. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. *Thorax* 2003; 58: 377-382.

9. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. *Crit Care Med* 1985; 13: 818-829.
10. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. *Intensive Care Med* 1996; 22: 707-710.
11. Guirgis, F. W., Donnelly, J. Cholesterol levels and long-term rates of community-acquired sepsis. *Critical care (London, England)*, 20(1), 408.
12. Córdova-Villalobos JA, Barriguete-Meléndez JA, Lara-Esqueda A, et al. Chronic non-communicable diseases in Mexico: epidemiologic synopsis and integral prevention. *Salud Publica Mex*. 2008; 50: 419-27.4.
13. Gutiérrez JP, Rivera-Dommarco J, Shamah-Levy T, et al. 2012 National Health and Nutrition Survey. National Results. Cuernavaca, Morelos, Mexico: National Institute of Public Health (INSP, MX). 2012.
14. Basto-Abreu A., Barrientos-Gutiérrez T., Rojas-Martínez R., Aguilar-Salinas C.A., López- Olmedo N., de la Cruz-Góngora V. Prevalence of diabetes and glycemic dyscontrol in Mexico: results from the Ensanut 2016. *Salud Publica Mex*. 2020;62
15. Baez B, Zamora I. Triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) index as a reference criterion of risk for metabolic syndrome (MetS) and low insulin sensitivity in apparently healthy subjects. *Gac Med Mex*. 2017. 153(2): 152-158.
16. Masana L, Correig E. Low HDL and high triglycerides predict COVID-19 severity. *Sci Rep*. 2021 30; 11(1): 7217.
17. Choi G.J., Kim H.M., Kang H. The potential role of dyslipidemia in covid-19 severity: an umbrella review of systematic reviews. *J Lipid and Atherosclerosis*. 2020.
18. Hann Ng W. Comorbidities in SARS-CoV-2 Patients: a Systematic Review and Meta- Analysis. *Clinical Science and Epidemiology*. 2021. 12(1).
19. Alcántara-Alonso E, Molinar-Ramos F, González-López JA, et al. High triglyceride to HDL- cholesterol ratio as a biochemical marker of severe outcomes in COVID-19 patients. *Clin Nutr ESPEN*. 2021. 2021.04.020.
20. Neira-Sánchez Elsa R, Germán Málaga. Sepsis-3 and the new definitions, is it time to abandon SIRS?. *Acta med. perú*. 2016; 33(3): 217-222.
21. Lee SH, Park MS, Park BH. Prognostic Implications of Serum Lipid Metabolism over Time during Sepsis. *Biomed Res Int*. 2015; 789298.
22. Sánchez Casado M., Quintana Díaz M., Palacios D., Hortigüela V., Marco Schulke C., García J. et al. Relationship between alveolo-arterial oxygen gradient and PaO₂/FiO₂ introducing PEEP in the model. *Med. Intensiv*. 2012; 36(5): 329-334.
23. Che-Morales JL. Cortes Telles A. Neutrophil/lymphocyte index as a serum biomarker associated with community-acquired pneumonia. *Rev Med Inst Mex Seguro Soc*. 2018; 56(6): 537-43.
24. Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. *Ther Adv Respir Dis*. 2020; 14:1753466620937175.

Table 1: Comparison of pneumonia severity according to the admitting hospital care unit.

Pneumonia severity scale	Ticomán General Hospital	Xoco General Hospital	Tláhuac General Hospital
PSI/PORT	73.5 (RIC 44.5 - 105)	67 (RIC 65 - 82)	75.5 (RIC 66 - 100)
SOFA	2 (RIC 2 - 3.5)	3 (RIC 2 - 6)	3 (RIC 2 - 7)
APACHE	11.5 (RIC 3 - 16.5)	12 (RIC 7 - 17)	8.5 (RIC 7 - 15)

Total =114 participants.

Figure 1: Classification of participants according to PSI/PORT categories.

Table 2: Contrast of clinical and sociodemographic characteristics of participants according to diagnosis of community-acquired pneumonia or novel coronavirus-19 disease.

Variable	Community-acquired pneumonia "CAP" n=12	COVID-19 "COVID" n=105	p value
Age	60.1 (\pm 18.5) years	56.6 (\pm 15.7) years	0.479 _a
Sex	33.3 % men, 66.7 % women	59 % men, 41 % women	0.125 _b
Weight	76.3 (RIC 65 - 80) kg	76 (RIC 67 - 90) kg	0.628 _c
Size	1.60 (1.58 – 1.60) m	1.62 (1.57 – 1.70) m	0.464 _c
BMI	28.4 (\pm 5.4) kg/m ²	29.0 (\pm 6.0) kg/m ²	0.830 _a
Institutionalized patients	0 % present	2.9 % present	> 0.999 _b
Patients with pleural effusion	25 % present	1 % present	*0.003 _b
Neoplasia	16.7% present	2 % present	0.055 _b
Liver disease	16.7% present	1 % present	*0.029 _b
Heart disease	8.3 % present	2 % present	0.288 _b
Cerebral vascular disease	8.3 % present	5 % present	0.498 _b
Chronic kidney disease	0 % present	4 % present	> 0.999 _b
Diabetes mellitus	25 % present	42.6 % present	0.354 _b
Systemic arterial hypertension	58.3 % present	37 % present	0.212 _b
Altered alertness	33.3 % present	26 % present	0.731 _b
Respiratory frequency	20 (RIC 19-27) breaths/minute	24 (RIC 22- 28) breaths/minute	*0.003 _c
Heart rate	90 (RIC 87.5-120.5) beats/minute	90 (RIC 80-104) beats/minute	0.861 _c
Systolic blood Pressure	113.7 (\pm 14.3) mm Hg	122.3 (\pm 18.7) mm Hg	0.126 _a
Body temperature	36.5 (RIC 36 - 37.1) °C	36.4 (RIC 36 - 36.8) °C	0.996 _c
Ph	7.39 (RIC 7.38 - 7.46)	7.44 (RIC 7.4 - 7.47)	0.260 _c
BUN	24 (RIC 18.5-36.5)	20.7 (RIC 15- 34.6)	0.404 _c
Serum sodium	134.5 (\pm 4.3) mEq/L	134.6 (\pm 6.1) mEq/L	0.966 _a
Hematocrit	41.4 (\pm 2.7) %	38.7 (\pm 11.6) %	0.670 _a

Glucose	134.5 (RIC 17.5-190.5) mg/dL	139 (RIC 105- 227.5) mg/dL	0.942 _c
pO2	49.5 (RIC 35.5 -79.5) mm Hg	61.5 (RIC 44 - 82) mm Hg	0.310 _c
TG	114.5 (RIC 88.5-153) mg/dL	174 (RIC 137- 238) mg/dL	*0.002 _c
C-HDL	20 (RIC 11 - 30) mg/dL	27 (RIC 21.9-31.1) mg/dL	0.247 _c
CT	130.5 (RIC 111.5- 195.5) mg/dL	132.5 (RIC 115.5-153.5) mg/dL	0.789 _c
C-LDL	70.3 (\pm 36.7) mg/dL	80.9 (\pm 32.7) mg/dL	0.533 _a
Acute kidney injury	58.3 % present	41.7% present	0.363 _b
PCT > 0.5 ng/mL	33.3 % present	15.1 % present	0.303 _d
HbA1c	12.3(RIC 11.6 -12.9) %.	8 (RIC 6.3 - 11.6) %	0.149 _c
Neutrophils	10.7 (RIC 5.0-15.1)x10 ⁹ /L	9.1(RIC 5.0-12.3)x10 ⁹ /L	0.400 _c
Lymphocytes	1.1 (RIC 0.6-1.3)x 10 ⁹ /L	0.8 (RIC 0.6- 1.2)x10 ⁹ /L	0.653 _c
SOFA	0 (RIC 0 - 3) points	2 (RIC 2 - 5) points	*0.002 _c
APACHE	16 (RIC 7 - 32) points	8.5 (5 - 15) points	0.346 _c
A-aO2	44.9 (RIC 26 - 70.4) mmHg	256 (RIC 176.5-341.5) mm Hg	*0.001 _c
pO2/FiO2	250 (RIC 227 - 256)	123 (RIC 91.5 - 167)	*0.025 _c
TG/C-HDL	4.7 (RIC 2.8 - 9.5)	6.4 (RIC 4.7 - 9.6)	0.295 _c
INL	9.2 (RIC 5.4 - 18)	9.2 (RIC 6.2 - 14.7)	0.916 _c
PSI/PORT	108 (RIC 89 - 131)	70.5 (RIC 52 - 99.5)	*0.002 _c
PSI/PORT Class	40 % V, 30 % IV and III	35.6 % II, 22.1 % III and IV	0.006 _d

^a Student's *t*-test; ^b Fisher's exact test; ^c Mann Whitney test; ^d Spearman's *x*² test.

Table 3: ROC curve results, showing cut-off points of the variables studied for variables with area under the curve greater than 50%.

SCALE	VARIABLE	Cut-off point	Area under the curve (AUC) %	Sensibility %	Specificity %
APACHE 25	Arterial alveolar gradient	284	72	76.4	65.4
	Neutrophil/lymphocyte ratio	7.79	58	68.9	42.1
	Absolute neutrophils	6.6	62	72.4	43.8
	Glycosylated hemoglobin	7.62	57	72.7	53.3
SOFA 3	C-reactive protein	12.2	57	66.0	50.0
	Arterial alveolar gradient	188.9	66	75.0	50.0
	Tg/HdI Ratio	5.41	58	63.0	44.7
	Atherogenic index (Col/hd I)	4.78	62	65.7	50.0
PSI PORT 90	Arterial alveolar gradient	238	60	70.8	60.4
	D-dimer	709	60	77.4	47.7
	Neutrophil/lymphocyte ratio	8.55	56	63.4	48.6

Table 4: Multivariate logistic regression analysis of the significant factors and cut-off points that increase the sensitivity and specificity of the pneumonia severity scales.

SCALE	VARIABLE	OR	IC	P
APACHE 25	ARTERIAL ALVEOLAR GRADIENT > 284	4.84	6.88-95.3	0.0001
	NEUTROPHIL/LYMPHOCYTE INDEX > 7.79	1.96	0.99-5.33	0.050*
SOFA 3	C-REACTIVE PROTEIN > 12.2	2.40	1.21-6.74	0.016
	ARTERIAL ALVEOLAR GRADIENT > 188.9	2.87	1.54-9.99	0.004
	TG/HDL RATIO > 5.41	2.81	1.01-1.06	0.005
	ATHEROGENIC INDEX (CHOL/HDL) > 4.78	2.33	1.17-6.58	0.020
PSI PORT 90	ARTERIAL ALVEOLAR GRADIENT > 238	2.12	1.10-13.88	0.034*

*only significance in COVID group

